Effects of Sodium Octanoate on Innate Immune Response of Mammary Epithelial Cells during Staphylococcus aureus Internalization

نویسندگان

  • Nayeli Alva-Murillo
  • Alejandra Ochoa-Zarzosa
  • Joel E. López-Meza
چکیده

Bovine mammary epithelial cells (bMECs) are capable of initiating an innate immune response to invading bacteria. Short chain fatty acids can reduce Staphylococcus aureus internalization into bMEC, but it has not been evaluated if octanoic acid (sodium octanoate, NaO), a medium chain fatty acid (MCFA), has similar effects. In this study we determined the effect of NaO on S. aureus internalization into bMEC and on the modulation of innate immune elements. NaO (0.25-2 mM) did not affect S. aureus growth and bMEC viability, but it differentially modulated bacterial internalization into bMEC, which was induced at 0.25-0.5 mM (~60%) but inhibited at 1-2 mM (~40%). Also, bMEC showed a basal expression of all the innate immune genes evaluated, which were induced by S. aureus. NaO induced BNBD4, LAP, and BNBD10 mRNA expression, but BNBD5 and TNF-α were inhibited. Additionally, the pretreatment of bMEC with NaO inhibited the mRNA expression induction generated by bacteria which coincides with the increase in internalization; only TAP and BNDB10 showed an increase in their expression; it coincides with the greatest effect on the reduction of bacterial internalization. In conclusion, NaO exerts a dual effect on S. aureus internalization in bMEC and modulates elements of innate immune response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sodium Octanoate Modulates the Innate Immune Response of Bovine Mammary Epithelial Cells through the TLR2/P38/JNK/ERK1/2 Pathway: Implications during Staphylococcus aureus Internalization

Bovine mammary epithelial cells (bMECs) contribute to mammary gland defense against invading pathogens, such as Staphylococcus aureus (intracellular facultative), which is recognized by TLR2. In a previous report, we showed that sodium octanoate [NaO, a medium chain fatty acid (C8)] induces (0.25 mM) or inhibits (1 mM) S. aureus internalization into bMECs and differentially regulates the innate...

متن کامل

Anti-Inflammatory and Antimicrobial Effects of Estradiol in Bovine Mammary Epithelial Cells during Staphylococcus aureus Internalization

17β-Estradiol (E2), the predominant sexual hormone in females, is associated with the modulation of the innate immune response (IIR), and changes in its levels at parturition are related to intramammary infections, such as mastitis. In bovine mammary epithelial cells (bMECs), E2 regulates differentiation and proliferation, but its immunomodulatory functions have not been explored. Staphylococcu...

متن کامل

Interaction of primary mammary bovine epithelial cells with biofilm-forming staphylococci associated with subclinical bovine mastitis

Background: Staphylococci are recognized worldwide as one of the most important etiological agents of bovine mastitis due to their virulence factors such as their ability to penetrate inside mammary epithelial cells and their ability to form biofilm. Aims: The objectives of this study were to establish a model of primary mammary epithelial cells origin...

متن کامل

Contribution of mammary epithelial cells to the immune response during early stages of a bacterial infection to Staphylococcus aureus

To differentiate between the contribution of mammary epithelial cells (MEC) and infiltrating immune cells to gene expression profiles of mammary tissue during early stage mastitis, we investigated in goats the in vivo transcriptional response of MEC to an experimental intra mammary infection (IMI) with Staphylococcus aureus, using a non-invasive RNA sampling method from milk fat globules (MFG)....

متن کامل

Genetic susceptibility to S. aureus mastitis in sheep: differential expression of mammary epithelial cells in response to live bacteria or supernatant.

Staphylococcus aureus is a prevalent pathogen for mastitis in dairy ruminants and is responsible for both clinical and subclinical mastitis. Mammary epithelial cells (MEC) represent not only a physical barrier against bacterial invasion but are also active players of the innate immune response permitting infection clearance. To decipher their functions in general and in animals showing differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013